2 research outputs found

    Shared Spare Parts Management in Offshore Remote Locations: A Model to Improve Logistics and Reduce Carbon Emissions.

    Get PDF
    The management of spare parts poses significant challenges, particularly in offshore remote locations. The combination of the remoteness of these locations and harsh environmental conditions adds complexity to the process of timely delivery of spare parts. As a result, lead times are prolonged and operational downtime is increased, leading to substantial financial losses for companies. The lack of simulation models limits the practical application of sharing spare parts strategy, hindering understanding of their potential benefits, costs, and challenges. This gap hinders the implementation of the concept of sharing spare parts management and prevents their adoption in real-world scenarios To address this gap, a simulation model was developed to manage spare parts across three offshore locations in the Barents Sea. The focus lies in exploring the benefits of sharing spare parts strategy among platforms, particularly regarding lead times, CO2 emissions, carbon tax costs, and reuse of spare parts among these platforms. The study follows a quantitative approach using AnyLogic software for simulation. Various factors, including storage capacities, vessel speed, carbon emissions, and carbon tax costs, were incorporated into the model. The research design consists of four stages: conceptualization, model structuring, parameterization, and validation. A case study approach is used, with data from three common equipment types across three criticality classes. Through a comparison between the baseline scenario and the solution scenario, the results demonstrate the effectiveness of the proposed concept of sharing spare parts. It reduced trips to the onshore warehouse by 42%, decreased total traveling time, CO2 emissions, and carbon tax costs by 48.6% each, and optimized lead times and inventory management. These results underscore the potential benefits of sharing spare parts systems, providing a pathway for more efficient and sustainable spare parts management in offshore operations

    Komponent design og studie av interne overflatekvalitet for 3D-printet deler av en malingsrobot.

    No full text
    Denne oppgaven er skrevet I samarbeid med ABB. Oppgaven bygger på å forbedre en malingsrobot. Malingsroboten består av flere mekaniske deler. Fokuset er å forbedre bæreevnen ved å studere ytterarmen på roboten og redusere svinn av maling som flyter gjennom malingssystemet. Den første delen av oppgaven inneholder teori og litteraturstudie for potensielle forbedringsmetoder. Girkoblingen, som har blitt identifisert som det svakeste leddet, og produksjonsmetoder for ytterarmen og malingssystemet. Konklusjonen er basert på materialvalg, kvalitet, miljøvennlige hensyn og modenhet av produksjonsmetoden. For å minimere risikoen for at malingen fester seg til overflaten er det nødvendig med en etterbehandlingsmetode. Videre I oppgaven vil flere metoder for å forbedre overflaten bli evaluert og vurdert. Konklusjonen for metoder for å forbedre malingsroboten er basert på beregninger, generelle anbefalinger og erfaring. Kunnskapen innhentet fra alle kilder er kombinert og justert for å forbedre den nåværende roboten og løse utfordringene den i dag møter. Det er konkludert med at Powder Bed Fusion - produksjonsmetoden er det beste alternativet med hensyn på det brede materialvalget, gode mekaniske egenskaper og modenheten til metoden. Den ferdige produserte prøvedelen er relativt grov. Abrasive Flow Machining er ansett som den beste metoden for å redusere grovheten ettersom de interne systemene er relativt komplekse. Abrasive Flow Machining prosessen pusser overflaten til den ønskede finheten er nådd. For å oppnå den ønskede bærekapasiteten uten brudd i tannhjulene er en utvidelse av tannhjulsettet og utskifting av material anbefalt. Ved å endre geometrien til tannhjulsettet fra rettfortannet tannhjul til spiralformet tannhjul vil bærekapasiteten øke med 16,4%. For å nå den ønskede kapasiteten er det behov for en utvidelse av tannhjulsettet.This thesis is written in collaboration with ABB. The task revolves around improving the abilities for a paint robot. The paint robot consists of several mechanical parts. The focus is to improve the payload capacity by studying the hollow wrist and reducing wastage of paint that flows through the paint system. The first part of the thesis contains theory and literature studies of possible improvement methods. The gear coupling, that has been identified as the weakest link, and production methods for the casing of the hollow wrist and the test block. The conclusion is based on material selection, quality, environmental impact and maturity of the production method. To minimize the risk for the paint to stick to the surface, there is a need for a post processing method. Further on in the thesis several methods to improve the surface have been evaluated and considered. The conclusion for methods to improve the paint robot based on calculations, studies and experience. The knowledge obtained from the sources are combined and adjusted to improve the current robot and solve the difficulties it is facing. It is concluded that the Powder Bed Fusion production method is the best suited option in terms of is wide material selection, great strength and maturity of the method. The finished manufactured test block is relatively rough. Abrasive Flow Machining process is considered to be the optimal method for reducing the roughness due to the geometry of the test block. The Abrasive Flow Machining process corrosives the surface and reaches the desired surface roughness. To obtain the desired payload capacity without failure in the gear coupling an expansion of the gear and substituting the material is advised. By changing the gear geometry from spur gear to helical gears results in an improvement of the bearing capacity with 16,4 % To reach the specified goal there is a need to expand the current size of the coupling
    corecore